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Axisymmetric flows with a two-layer density stratification are produced by releasing 
either a constant flux of fluid from a point source or a constant volume of fluid into a 
rotating environment with a different density. In  both experiments the density inter- 
face intersects one horizontal boundary, forming a front. Transition to  non-axisym- 
metric flow is observed and can be described by two parameters: 0, the square of the 
ratio of the internal Rossby radius of deformation to the horizontal length scale of 
the flow, and 6, the fraction of the total fluid depth occupied by the layer inside the 
front. For 0 < 1 and 6 > 10-1 unstable disturbances obtain most of their energy from 
the potential energy of the flow, whilst for 6 < 10-1 extraction of kinetic energy from 
the basic shear becomes the dominant driving mechanism. When the front intersects 
the free surface, n = 2 is the minimum azimuthal wavenumber for an unstable dis- 
turbance. At large amplitude of the growing waves, baroclinic and barotropic pro- 
cesses combine to form n vortex dipole structures which entrain buoyant fluid from 
the original vortex and propagate radially over the free surface. Vortices are also 
produced by the continuous release of fluid from a confined source at  its own density 
level in a region of constant density gradient. As in the two-layer case the axisym- 
metric vortex grows to a critical size and then becomes unstable to a disturbance with 
wavenumber n = 2, producing, a t  large amplitude, two vortex pairs. 

1. Introduction 
There are a number of geophysically important situations in which surfaces of 

constant density, under the influence of the Coriolis force due to the Earth’s rotation, 
intersect one horizontal boundary and in which the fluid motion is not constrained by 
rigid vertical walls. Isolated eddies, containing closed streamlines and with horizontal 
length scales of the order of 102 km, are found a t  the surface in many parts of the 
oceans. More rectilinear frontal zones between air or water masses of unequal density, 
intersecting the free surface of the ocean or the rigid bottom boundary of the atmo- 
sphere, also exist far away from vertical boundaries. 

I n  this paper we discuss some laboratory experiments which elucidate a number 
of features of the stability of such flows. We concentrate upon vortices produced in a 
fluid with a two-layer stratification. The density interface between the layers inter- 
sects one horizontal boundary, either the free surface or the rigid bottom, far away 
from any vertical walls. Thus the streamlines of the flow are determined solely by the 
interaction of the Coriolis, centrifugal and buoyancy forces, and the influence of the 
upper and lower boundaries. 

Two types of flow that satisfy the above conditions can readily be produced in the 
I 0  F L M  105 
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laboratory, The first is similar to that observed by Saunders (1973). I n  his experiments 
a salt solution was placed inside a bottomless cylinder which was surrounded by a 
homogeneous layer of fresh water. After the system was brought to solid-body rota- 
tion, the cylinder was carefully removed. The denser fluid then collapsed and spread 
radially until it reached a state of quasi-geostrophic equilibrium (in which the radial 
pressure gradient due to buoyancy forces is balanced by the Coriolis and centrifugal 
forces). Under some conditions the resultant anticyclonic vortex remained stable and 
circular, but under other conditions it broke up into a well-defined number of smaller 
vortices. Saunders found that this behaviour could be described by a single dimension- 
less parameter 19, = g‘h,/f2R;, where g‘ = gAp/p is the reduced gravity between the 
layers, h, is the initial depth of the denser salt solution (and also the total water 
depth), R, is the cylinder radius and f = 2Q is the Coriolis parameter. When 8, > 1.8, 
the vortices were observed to be stable. 

The second type of flow is produced when fluid is continuously supplied from a 
confined source region into an  environment which has a different density and which 
is initially in solid-body rotation. I n  this case the vortex grows continuously both in 
depth and radius, and the anticyclonic motion in the vortex, which results from the 
radial motion of the fluid away from the source, always remains in a state of quasi- 
geostrophic balance. I n  the case with an infinitely deep environment Gil et al. 
(1979) found nonlinear solutions for both an inviscid vortex and for a vortex influ- 
enced by bottom friction. These authors also carried out some experiments in which 
dense fluid was forced through a small orifice onto the bottom of a container filled 
with less dense fluid in rigid rotation. The doming of the interface was only observed 
for a short time and the vortices were not observed to be unstable. 

I n  this paper, we extend the study of both of these flows and make some attempts to 
relate the two. I n  $ 3  we describe the flow produced by allowing a verticaI cylinder of 
fluid to collapse toward an equilibrium state: a ‘constant volume’ experiment. I n  
contrast to Saunders (1973) the fluid is less dense than the environment and so the 
vortex is formed at  the free surface rather than on the bottom. I n  addition, the ratio 
6, = h,/H of the initial depth h, of fluid in the cylinder to  the total depth H of the 
fluid was varied. We found that we could never produce a stable vortex, even for 
6, = 1 and 0, taking values a t  which Saunders’ bottom vortices were stable. The 
smallest azimuthal wavenumber n of the unstable disturbances was n = 2. At a fixed 
value of O,, the wavenumber n first decreased as the depth ratio 6, was decreased 
from unity but reached a minimum a t  6, z 0.1. At still smaller values of 6, the wave- 
number increased again. 

The vortices produced by the continuous release of fluid from a confined source in 
a rotating, homogeneous layer of finite depth H are described in $ 4 .  These we will 
denote as ‘constant flux ’ experiments. The axisymmetric vortices produced in this 
way were always observed to grow to a critical size at which they became unstable to 
a non-axisymmetric disturbance. For those vortices a t  the free surface, disturbances 
of azimuthal wavenumber n = 2 are the first to amplify. 

Observations of the transition from axisymmetric to non-axisymmetric motion in 
the two types of vortices are complementary: the constant flux experiments allow a 
state of marginal stability to be approached slowly, whilst the constant volume 
experiments give rise to  instability at supercritical conditions. Although the velocity 
and potential vorticity profiles are different in the two types of vortices, in both 
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systems the instabilities range from those that are almost purely baroclinic and driven 
by the release of potential energy, to those that are almost purely barotropic and 
which draw on the kinetic energy in the basic shear flow. The nature of the amplifying 
disturbances is similar in each type of vortex and the subsequent non-axisymmetric 
flows have several features in common. In  particular, instability leads to  a vortex- 
pairing behaviour which produces both splitting and rapid radial spreading of the 
vortex fluid. At an early stage of the pairing process cyclonic rings, or ‘spiral arms’, 
of buoyant fluid are produced. 

I n  addition to the examples given earlier, there are a number of geophysical situa- 
tions where isolated eddies and frontal regions are embedded within a fluid containing 
smooth density gradients. Experiments designed to investigate these flows are dis- 
cussed in 3 5, where we describe the flow that is produced by a continuous confined 
source of fluid embedded in a constant density gradient, far from horizontal boundaries. 
The resulting quasi-steady axisymmetric vortex is compared with steady solutions 
that were discussed recently by Gill (1981). This vortex is also found to  become un- 
stable and to break up in a manner similar to that for the two-layer case. Finally, in 
Q 6 we present the main conclusions of this study and discuss the relationships between 
the constant volume and constant flux vortices. 

2. The experiments 
The experiments were performed on a 1 m diameter, direct-drive rotating turn- 

table. In  order to  cover a range of fluid depths two cylindrical Perspex tanks were 
used: one 90 cm in diameter and 30 cm deep, and the other 29 em in diameter and 
92 cm deep. A third, rectangular tank measuring 45 cm by 60 cm in cross-section and 
45 cm deep was used for many experiments, enabling side-view shadowgraph obser- 
vations to be made. In  each case the tank was centred on the vertical rotation axis of 
the table. 

For the constant volume experiments, a (dyed) fluid of density p1 was contained 
within a bottomless cylinder of radius R,. The cylinder was centred on the axis of 
rotation and immersed to the required depth in the surrounding fluid of density p2. 
The dyed fluid was added until it formed a layer of depth h, within the cylinder. I n  
the general case, the cylinder contained two layers of fluid (see figure la)  and there 
was no horizontal pressure gradient a t  its bottom. The whole system was then left to 
come to a state of solid-body rotation. 

The experiment was initiated by the vertical withdrawal of the cylinder, which was 
done as carefully as possible in order to minimize any mixing between the two fluids. 
When p1 > p2, the dyed fluid formed a vortex on the bottom of the tank, whereas, 
when pl < p2, a surface vortex was formed. Two values of the cylinder radius H, were 
used: 4.75 cm and 7.30 cm. The initial depth ratio covered the range 0-03 < h,/H < 1, 
where H is the total fluid depth. 

I n  the constant flux experiments (see figure 1 b )  fluid of density p1 was added con- 
tinuously from a confined source at  the free surface (or a t  the bottom) of a layer of 
density pz, which was initially in solid-body rotation. The source consisted of a small 
(1  cm diameter) sphere of foam rubber attached to the end of a vertical pipe (0.3 cm 
diameter). The source was fed under gravity from a reservoir, both being mounted 
on the rotating table. The flow-rate Q was monitored by a flowmeter and held constant 
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to within 10 04 throughout a given experiment. The flow-rate took values throughout 
the range 0.1 < Q < 3 cm3 s-l. 

I n  both experiments the density difference was produced by the addition of salt 
t o  one of the fluids. Consequently, the two fluids were miscible and mixing between 
them could occur. However, the amount of mixing was small and we shall treat the 
layers as though they were immiscible, but with no surface tension. The buoyancy 
forces are described by the parameter g’ = g Ipl - pz/ /p l ,  where g is the gravitational 
acceleration. I n  the experiments g‘ varied from 0.1 cm s-2 to 10 cm s - ~ .  The Coriolis 
parameter f measured in radians per second was varied from 0.5 s-1 to 5.6 s-l, and 
H from 10 cm to 90 cm. The only remaining extensive parameter was v, the kinematic 
viscosity, but this was constant at 0.01 cm2 s-l. 

The flows were visualized by the addition of dye, beads floating on the free surface, 
suspended aluminium particles and shadowgraph imagery. Plan-view photographs 
were taken in the rotating frame of reference, whose direction of rotation is anti- 
clockwise. All of the quantitative information presented in the following sections was 
obtained from the photographic record. 
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3. Constant-volume vortices 
3.1. Axisymmetric motion 

When both mixing and molecular diffusion between the two fluids are neglected, the 
axisymmetric flow produced by the gravitational collapse of a central cylinder of 
fluid is described by four dimensionless parameters. These are a Richardson number, 
8, = g'h,/ f 2R& the aspect ratio h,/R, for the cylinder of buoyant fluid, the fractional 
depth So = h,/H and an Ekman number v/hi f. The parameter 8, is the square of the 
ratio of the Rossby radius of deformation (g'h,)*/ f to the initial radius R, of the central 
cylinder. When 8, c 1, the initial adjustment will produce an anticyclonic vortex with 
a maximum depth h 5 h,, but h is much less than the initial depth when 8, $ 1. The 
ratio of vertical and horizontal length scales of the adjusted vortex is also determined 
by the initial aspect ratio, which was varied through the range 0.2 < h,/R, c 2. The 
Ekman number describes the influence of friction at  the density interface, the rigid 
bottom and the free surface. Since the Ekman number is of the order of 10-4 in the 
present experiments, we shall treat the axisymmetric flow as though it were inviscid. 
However, a comparison between vortices on the free surface and those on the bottom 
will show that this may not be a valid assumption when considering the stability of 
vortices adjacent to a rigid surface (see 3 3.2). 

The adjustment of the fluids after the retaining cylinder wall is removed is initially 
dominated by the buoyancy force. When p1 < pz, the less dense fluid rises and spreads 
radially a t  the surface. Conservation of angular momentum then implies that the 
spreading fluid must form an anticyclonic azimuthal flow. Similarly, fluid in the lower 
layer moves in towards the axis and forms a cyclonic flow. Radial motions are then 
opposed by a Coriolis force due to the azimuthal flow. The system rapidly adjusts 
(in a time of order f -l) to a quasi-gcostrophic equilibrium state in which buoyancy, 
Coriolis and centrifugal forces are balanced. As confirmed by Saunders (1973), the 
radius R of the vortex increases by approximately one Rossby radius, i.e. 

R + R,(1 +St). 

As the radius increases the depth decreases, and both effects induce anticyclonic 
motion in the vortex. Similarly, both the radial inflow and the increase in depth 
induce cyclonic motion in the lower layer. The final depth and velocity profiles in the 
case of an infinitely deep bottom layer are discussed by Csanady (1979) and Flier1 
(1979). They show that the maximum azimuthal velocity occurs a t  the outer edge of 
the vortex and is of order (g'h,)t. When the bottom layer has a finite depth, the magni- 
tude of the azimuthal velocity in the lower layer is zero a t  r = 0 and r x R, and 
passes through a maximum somewhere near r 5 R,. 

After adjustment the axisymmetric vortex still contains potential energy stored 
in the density field. This potential energy is a possible energy source for non-axisym- 
metric motions via baroclinic instability, and Saunders concluded that this was the 
source of energy for the instabilities he observed. On the other hand, the kinetic energy 
associated with the horizontal shear is a possible energy source for barotropic insta- 
bilities. It is known (see e.g. Gill, Green & Simmons 1974) that the energy source for 
instability in a two-layer flow depends on the relative depths of the layers, as well as 
on the potential and kinetic energy in the basic flow. In  our experiments we investigate 
the transition to non-axisymmetric flow as a function of 0, and 8,. 
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FIGURE 2. A sequence of plan-view photographs (taken in the rotating frame of reference) of 
a const,ant volume vortex that is unstable to a disturbance with n = 2.  Tlic frames were taken 
2.3, 4, 7 and 10 revolutions after the cylinder was removed. Tlie central anticyclonic circulation 
becomes elongated and then strong cyclonic motions with closcd streamlines appear near each 
end. In frames ( b )  and (c),  so much dyed fluid is ent'rained into cyclonic rings that it appears 
to spread over the radius of the cyclones. In  frame (d),  two dipole structures move away in 
opposite directions. Concentric circles on the base of tho tank are at 4 cm intervals. The tank 
rotates in the anticlockwise direction. f = 1.46 s-l, g' = 6 cm s-?, H = 10.7 cm, R, = 7.3  cm, 
0, = 0.31, 8, = 1.0. 

3.2.  Non-uxisymmetric motion 
(i) Onset of instability. We restrict our attention to  the case where the vortex is less 
dense than the environment and spreads out on the free surface. Most of the qualitative 
features are the same for the dense bottom vortices, and we will point out the few 
differences a t  the end of the section. Saunders gives results for bottom vortices with 
6, = 1 and our results for that case are in agreement with his. 

Over the whole parameter range we were able to cover, we found that the axisym- 
metric motion was unstable to non-axisymmetric disturbances. These began to 
manifest themselves after a few ( 2  to 10) rotation periods as growing perturbations 
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FIGURE 3. Plan-view photographs of a constant volume vortex with a large depth ratio showing 
an unstable disturbance with n. = 3. Frames are a t  5, 9, 11 and 12 revolutions after the cylinder 
was withdrawn. Much of the dyed fluid is entrained into the cyclonic rings in ( b ) .  Three vortex 
pairs are formed and these remove all of the dyed fluid from the original vortex. f = 2.82 s-l, 
g’ = 4.5 cm s - ~ ,  H = 12.2 cm, R, = 7 . 3  cm, Oo = 0.13, 8, = 1.0. 

to the initially circular shape of the vortex. The zonal wavenumber n of the perturba- 
tion was found to  depend on 8, and a,,, and took integer values n 2 2. Examples of 
the onset and growth of these non-axisymmetric motions are illustrated by the three 
experiments shown in figures 2, 3 and 4. I n  figure 2 (8, = 0-31, 8, = 1.0) an n = 2 
disturbance amplifies, while in figures 3 (8, = 0.13, 8, = 1.0) and 4 (8, = 0.092, 
8, = 0.2) the disturbance has wavenumber n = 3. We will consider the large amplitude 
behaviour of these instabilities later, but first we will examine some of the quantitative 
aspects of the initial perturbations. 

The wavenumber n of the perturbation is plotted against 8, and 8, in figure 5. 
Only these two parameters are shown because no dependence of the form or behaviour 
of the disturbance upon h,/R, was detected. For fixed 8, we see that n increases as 
8, decreases, a result that was found for bottom vortices (with 8, = 1) by Saunders. 
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FIGURE 4. Plan-view photographs of a constant volume vortex with a small depth ratio and 
unstable to ?z = 3. Frames are at 9, 11, 16 and 19 revolutions after the cylinder was removed. 
Closed cyclonic circulation has not begun in (a). Frames (b)  and (c) show that only a small 
amount of dyed fluid is carried into the cyclonic rings, and that the anticyclonic circulation in 
each lobe of the disturbance pinches off from the central vortex without drawing all of the 
buoyant fluid out of the original vortex. In (d )  there remains a large anticyclone after the three 
vortex dipoles have broken away. Within each dipole the anticyclonic part contains most of 
the dyed fluid. f = 2.96 s-l, g‘ = 7.5 cm s - ~ ,  H = 28 cm, R,  = 7.3 cm, 8, = 0.092, 8, = 0.20. 
The hole m the lid guides the cylinder and appears off-axis bccause the camera is mounted 
slightly to onc side. 

For fixed 8,, on the other hand, n first decreases with 6, and then increases again. 
We note that the results from experiments with H = 90 cm are consistent with those 
obtained with H = 20 cm at the same values of 8, and 6,. However, for 6, = 0.1, say, 
the vortices in the two tanks are 9 cm and 2 cm deep, respectively, and the Ekman 
numbers based on h, differ by a factor of 20. This implies that frictional effects, at  
least in surface vortices, are probably not important. In order to explain the depen- 
dence of the wavenumber n on the Richardson number and depth ratio, we shall now 
examine the stability of the vortex to baroclinic and barotropic disturbances. 

(ii) Baroclinic instability. The essential features of the instability can be investi- 
gated by appealing to the following highly simplified model, first discussed by Phillips 
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FIGURE 5 .  Observed values of the zonal wavenumber n as a function of the initial parameters 
8, and 8,. Solid lines are fitted by eye to the data and define transitions from one wavenumber 
to another. Numbers within brackets show experiments that could not be definitely classified. 
Modes with n 2 2 are predicted to be baroclinically stable to the left of the broken line, which 
is given by (3.7). 

(1954). Consider the two-layer flow of an inviscid fluid in an infinitely long, vertically 
sided channel between y = 0 and y = R, which is rotating about a vertical axis with 
rotation rate hf. The layers have uniform velocities U, and U, in the x direction. 
Phillips showed that, in the limit of very small Rossby number, but with U, += U,, 
the flow is unstable to a disturbance with horizontal wavenumber K provided 

Here we have defined 8 = g'h/f2R2 and S = h / H ,  where h is the depth of the upper 
layer and H is the total depth. 

It is possible to write down the dispersion relation for this model. For a perturbation 
stream function of the form eik(x-et) sin ly, with K 2  = k2 + 12,  the growth rate is given by 

where ci is the imaginary part of the wave speed c. The wavenumber K and the phase 
speed c have been non-dimensionalized using the channel width R and the time scale 
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f-'. By finding the stationary point of (3.2) it can be shown (when 8 < 6/[1- 61) that 
the wavenumber Em with the largest growth rate is given by 

Before we can apply the results of the rectilinear problem to our axisymmetric 
laboratory flows, it is necessary to relate the values of 8 and 6 for the geostrophically 
adjusted vortex to the initial parameters 8, and So of the original cylindrical column 
(see figure 1) .  This can only be done quantitatively once the shape of the vortex is 
known, but the qualitative features of the relationships are not particularly sensitive 
to the exact shape. I n  order to illustrate the behaviour, we assume that the adjusted 
vortex has straight sides and that, when 8, < 1, the depth q of the interface is given 
by 

o r < R,(I - &, 
71(r) = f h 9  (3.4u) 

\+hO$(l+Oi)(l-r/R), R,(l-@) c r < €2, 

where R = R,(1 +@) and h is the maximum depth after adjustment. When 8, > 1, 
the sloping region of the interface extends all the way to the axis ( r  = 0) and we let 

q(r) = h( 1 - r/R). (3.4b) 

Conservation of volume implies that 

and 

( 3 . 5 a )  

(3 .5b)  

Equation ( 3 . 5 ~ )  shows that, for fixed 6 (or 8,), increasing 6, is equivalent to in- 
creasing 6 and that, when 8, < 1, &/So varies slowly with 8,. On the other hand (3 .5b )  
shows that 8 increases like 8, for small 8,, attains a maximum value of 8 = 0.188 a t  
8, = 1 and then decreases again like 601 for large 8,. Using ( 3 4 ,  the wavenumber 
of maximum growth rate predicted by (3.3) (now taking only integer values, n )  
becomes n - O;*[l+ 0(8,$)] at 8, < 1 - 6, < 1 and a fixed value of 6,. This seems a 
reasonable approximation to the behaviour of the observed wavenumber provided 
that 6, > 0.4. Saunders (1 973) reached a similar conclusion for bottom vortices with 
6, = 1. Furthermore, (3.3) predicts that a given wavenumber will be observed along a 
line B z 0*Sk;2(6/[1 -a])*. With (3 .5 )  our simple model gives 8, N n-2((s,/[1 -6,])4 
a t  8, < 1 -6, < 1, and 8,[1+ 0(68)]  - n-*St a t  1 -6, < 8, < 1. This behaviour, too, 
is very similar to that of the solid lines that mark the three transitions between 
wavenumbers on figure 5, provided that 6, > 0.2. Thus the properties of the 
observed disturbances at So > 0.2 are consistent with those of the baroclinically 
unstable disturbances predicted by Phillips' model. For So < 0.1, however, the 
wavenumber n is found to increase' again as 6, is decreased further. We must seek 
an alternative explanation for this behaviour. First, though, we will find those 
conditions that give rise to marginally unstable baroclinic perturbations. 
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For baroclinic instability to occur (3.1), (3.5a) and (3.5b) show that we require 

The smallest unstable wavenumber observed in our experiments with surface 
vortices was n = 2. This corresponds to the value K 2: 2 in (3.6) if the perimeter of 
the circular vortex is imagined to be a straight line. It will be explained below that 
only modes with n >, 2 can grow. Given this result, (3.6) implies that stable vortices 
will only be found when 

& < 
2 7 3  (3.7) 

This curve separating baroclinically stable and unstable vortices is shown on figure 5 .  
There we see that for values of 8, > 0-25 (3.7) can never be satisfied and no stable 
vortices can be produced. On the other hand all vortices are stable in the limit as 
8, + 0, a feature which is characteristic of baroclinic instability. 

There are no stable vortices for 8, > 0.25 because, as mentioned above, 8 attains a 
maximum as a function of 0,. Hence increasing 0, in an attempt to produce a stable 
vortex merely leads to an adjusted vortex with a smaller value of 8. 

It should be stressed that the comparison of the idealized baroclinic model of Phillips 
(1954) with our experiments is at best a qualitative one. It is well known that the 
conditions for baroclinic instability depend on the details of the velocity profile. 
However, the model assumes that there is uniform flow in each layer, whereas the 
vortices contain a strong radial velocity gradient. Furthermore, the model takes no 
account of the circular geometry, nor of the fact that the interface between the vortex 
and theenvironment intersects the free surface instead of rigid vertical walls. Even the 
depth profile we have assumed for the adjusted vortex is only an approximation to the 
real shape. Consequently, the curve representing marginal stability on figure 5 is shown 
only to give an idea of the qualitative behaviour of the system. Thus, although we 
believe that stable vortices cannot be found for values of 8, greater than some critical 
value, the value 0.25 given by (3.7) has little meaning. Unstable vortices are produced 
at conditions which satisfy (3.7), but it is impossible to say whether or not these 
conditions actually lie on the stable side of the appropriate marginal stability curve. 

(iii) Barotropic instability. Phillips’ model neglects another essential feature of the 
present experiments, namely the presence of horizontal shear. This can cause the 
vortex to be unstable to barotropic disturbances. Hide (1967) and Busse (1968) in- 
vestigated the stability of the free shear layer produced by a differentially rotating 
disk in an unstratified, rotating fluid. They showed that instability occurs whenever 
the supply of kinetic energy from the shear is large enough to overcome the frictional 
dissipation, and that the wavenumber with maximum growth rate decreases as the 
thickness of the shear layer increases. The instability results in the production of a 
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regular pattern of vortices in the shear layer. In  the present experiments the thickness 
of the shear layer is proportional to  8,. Therefore, the wavenumber of the amplified 
barotropic modes should decrease with increasing 8,. 

The experimental results can now be interpreted in terms of mixed baroclinic and 
barotropic instabilities. I n  the limit as 8, --f 0, only barotropic instability is possible 
(except a t  8, -+ 0) while, a t  8, N 1, the instability is basically baroclinic and dominated 
by the release of potential energy. As 6, is decreased from unity (with fixed 0,) the 
wavenumber of the baroclinic mode with the greatest growth rate decreases. The 
grow rate of that mode also decreases with 8,, tending to  zero at  the curve of marginal 
stability for n 2. Once 6, becomes small (say 8, 5 0.1) the rate of supply of potential 
energy is overshadowed by the availability of kinetic energy from the horizontal 
shear. Because the wavenumber with maximum growth rate dominates the flow 
pattern, the wavenumber increases to the barotropic limit as 8, --f 0. Thus the observed 
instabilities a t  8, - 0.1 are of mixed type. 

(iv) The marginally unstable mode. We now return to discussion of the minimum 
wavenumber that can be baroclinically unstable. It is observed that n = 2 modes 
may grow, and so we need only consider the mode n = 1. Because the density interface 
intersects the free surface, an n = 1 disturbance merely moves the whole vortex 
radially. The free surface is a geo-potential surface, and so such vortex motion does 
not release any potential energy with which to drive the disturbance. This differs 
from the system considered by Hart (1972, 1980), where two layers of equal depth are 
contained within a cylindrical container and the motion is driven by the differentia1 
rotation of a lid on the upper layer. I n  this case the interface intersects the vertical 
walls of the container so that n = 1 can release potential energy. Both experiment 
and calculation show that this mode can be baroclinically unstable (at a critical value 
of 8 N 10-1) and that it is the most unstable mode under many conditions. 

The results for the surface vortices can be compared with those for the bottom 
vortices observed by Saunders (1973). As noted earlier, Saunders only examined the 
case in which the original cylindrical column extended throughout the full depth of 
the fluid (8, = 1). He found very similar behaviour, with the wavenumber of the 
observed unstable mode increasing as n % 1-88;4. However, in marked contrast to 
the results presented here, he observed stable vortices for 8, > 1.8 and ‘vortex 
wandering’ for 0.9 < 8, < 1.8. The existence of stable vortices would appear to be 
due to the effects of the Ekman layer between the vortex and the bottom of the tank. 
It is known (see Barcilon 1964 & Pedlosky 1979, p. 494) that Ekman layers are able 
to dissipate the kinetic energy of the longer baroclinic waves and, therefore, to 
stabilize those disturbances. At the same time, (3.6) implies that the vortices at large 
values of O,, are stable to short waves. Surface vortices, on the other hand, are only 
influenced by much weaker interfacial and surface Ekman layers. This explanation 
is also consistent with the observation that transitions between wavenumbers occur 
at higher values of 8, for the bottom vortices than for those a t  the surface, the longer 
wave being stabilized by friction in the former case. For example, the transition 
between n = 3 and n = 4 occurs a t  0, % 0.12 for the surface case (8, = I ) ,  but a t  
8, z 0.20 for bottom vortices. 

A second contrast between the bottom and surface vortices is the occurrence of 
vortex wandering, which may be interpreted as a disturbance with n = 1. As the 
bottom vortices are more dense than their environment and the flat bottom is not a 
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geo-potential surface, a small motion of the vortex off the axis of rotation will lead to 
a centrifugal instability. In  the case of a less dense vortex the centrifugal force tends 
to restore the vortex to its original position, so that n = 1 is not expected to grow for 
surface vortices. 

3.3. Large-amplitude behaviour 
The evolution of non-axisymmetric disturbances to very large amplitude is shown in 
the photographs of figures 2, 3 and 4 for wavenumber n = 2 and n = 3. The most 
striking feature of the flow is the formation of vortex pairs. The number of vortex 
pairs produced is equal to the wavenumber of the initial disturbance, and each pair 
consists of one cyclonic and one anticyclonic vortex. The relative motion of the vortex 
pairs causes the final break-up of the original vortex. In the following, the evolution 
of the flow, as a function of the depth ratio So, is described. 

We shall discuss the case n = 3, but the basic details are the same at all wavenumbers 
observed. As the photographs do not reveal the sign of the fluid velocity, the motion 
is sketched in figure 6. Figure 6 (a )  shows an anticyclonic vortex that is perturbed by 
a baroclinic n = 3 mode. At this small but finite amplitude of the wave, there is 
cyclonic vorticity about the points marked by crosses just ahead (in the anticlockwise 
direction) of each lobe of the disturbance. As the lobes grow in amplitude, closed 
cyclonic circulation is established about the crosses. This accumulation of cyclonic 
vorticity may be driven by the kinetic energy of the horizontal shear that is present 
near the density front. This point will be discussed further in $ 6 .  

The new cyclonic vortices extend throughout the depth of the bottom layer and 
begin to entrain, a t  the surface, less dense fluid from the original vortex, as shown in 
figure 6 (b) .  The entrainment produces rings of dyed fluid with cyclonic motion. The 
anticyclonic lobes eventually pinch off to form their own closed circulations. In  
contrast t o  the cyclonic rings, the resultant anticyclonic motion appears to be confined 
to the upper-layer fluid. The vortex pairs so formed continue to entrain fluid via narrow 
streams from the remaining central vortex, and they strengthen a t  its expense 
(figure 6c). 

Until the vortex-pairing process is complete, the non-axisymmetric disturbances 
are stationary in the rotating frame of reference. This result is independent of wave- 
number and differs from the observations of Saunders (1973). In  his bottom vortices 
the pattern was advected in the direction of the flow. The difference may again be 
due to the different frictional effects caused by the bottom boundary and the free 
surface, but possibly also to a horizontal density gradient of opposite sign. 

The relative strengths of the cyclones and anticyclones varies with the ratio of 
layer depths. This can be seen in figures 3 and 4, which show the n = 3 instability for 
6, = 1.0 and So = 0.20, respectively. Although the initial perturbations are very 
similar in appearance, the cyclones are much less intense for small values of 6,. 
Consequently the cyclones entrain much less dyed fluid from the original vortex. 
The closed circulations of the new anticyclones also contain less of the original upper- 
layer fluid than they do when 6, % 1.  Thus, in'figure 4, the three vortex pairs move 
away (the anticyclones appearing strongest) leaving a smaller, but still vigorous, 
central anticyclonic vortex. In figure 3, almost all of the upper-layer fluid is carried 
away by the three vortex pairs, and this fluid is more nearly equally partitioned 
between the circulations of opposite sign. 
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FIGURE 6. Schematic diagrams of the motion that is observed during the break-up, with n = 3, 
of a constant volume vortex. A depth ratio So N 0.4 is assumed, but the flow at larger values 
of 8, differs only in that more of the original vortex fluid is removed by the vortex dipoles and 
a greater proportion of the dyed fluid is found in the cyclones. In ( a )  the crosses mark the 
points about which cyclonic motion develops. 

The qualitative observations of the large amplitude behaviour are consistent with 
a changing role of kinetic and potential energies as the depth ratio is varied. The 
cyclones formed at  the edge of vortices with small 8, are similar to the shear-layer 
instabilities observed beneath a differentially rotating disk (Hide 1967). This baro- 
tropic process, through vortex pairing, assists the growth of a baroclinic mode of the 
same wavenumber and a small fraction of the potential energy stored in the original 
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vortex is released. On the other hand, when So N 1, instability greatly reduces the 
potential energy of the flow, and the disturbance growth rate is several times greater. 

We have not made a systematic study of the final stages of interaction between the 
vortex pairs. However, those formed from an n = 2 mode propagate radially in 
opposite directions under the influence of their own vorticity. This also appears to 
be true when n = 3 and So is not too small. At small So, though, the vortex pairs are 
much weaker and often appear to be influenced by the other pairs and by the remaining 
anticyclonic vortex (see figure 4)  until the whole flow field is eventually dissipated by 
friction. A very similar vortex-pairing behaviour is observed in the confined source 
experiments which are discussed in the following section. 

4. Constant flux vortices 
4.1. Axisymmetric $ow 

We now consider the flow produced by the continuous addition of fluid from EL confined 
source a t  the free surface (or a t  the bottom boundary) of a homogeneous layer, as 
sketched on figure 1 (b ) .  The homogeneous layer, of depth H ,  is in solid-body rotation 
before the source is turned on at  time t = 0. A first approximation to the resulting flow 
can be obtained by neglecting the effects of friction at  the density interface, the free 
surface and the tank bottom. 

(i) Inviscid vortex. The inviscid flow, both inside and outside the vortex, is governed 
by the principle of conservation of potential vorticity. Once the incoming fluid has 
spread radially over an area much greater than that of the source, the source may be 
regarded as a delta function at  the origin (Gill et al. 1979). This implies that fluid 
enters the vortex with zero angular momentum. Conservation of angular momentum 
implies that the azimuthal velocity in the vortex, relative to the rotating frame, is 

vul = -4fr .  (4.1) 

The initial potential vorticity in the environment is f l H  and its conservation implies 
that 

f + C 2  -=- f 
H - q  H’ 

where E;, is the relative vorticity in the environment and q(r)  is the depth of the vortex. 
Thus the azimuthal velocity in the environment is given by 

When the input flow-rate is small, the radial pressure gradient due to buoyancy 
forces must be balanced by the Coriolis and centrifugal forces. For a Boussinesq fluid 
under the hydrostatic approximation this implies that 

where g’ is the reduced gravity between the layers. Provided the depth of the vortex 
is small (6 = h/H < I ) ,  then vi < ti: and we can neglect the centrifugal force in the 
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environment. Then differentiating (4.2) to find dq/dr ,  and using (4.1) to substitute 
for v , ,  (4.3) becomes 

The solution of (4.4) that is regular at  the origin is 

(4.4) 

where h = (g'H)+/f is the Rossby radius of deformation for the environment and A 
is a constant to be determined by matching the flow at r = R, the radius of the vortex 
at the surface (see figure I b).  

The boundary condition at  r = R is determined as follows. Mass continuity implies 
that the flux across any cylindrical surface of radius r > R in the environment is equal 
to the input flow-rate Q into the vortex. That is 

Q = 2nrHu, (4.6) 

where u = u(r )  is the radial velocity component. Hence the radial displacement of 
fluid initially at  r = ro is given by 

Angular momentum is conserved during this radial motion and so 

vLr = if.:, 
where vL is the azimuthal velocity measured in the laboratory frame. Substituting 
for rf from (4.7) and subtracting the velocity of the rotating frame, we find that, for 
r 2 11, 

f Q t  v 2 =  -- 
2nHr' 

Thus the boundary condition for (4.5) becomes 

at  r = R. v2 = -- 
2nRH 
f Qt 

(4.9) 

(4.10) 

In order to apply this boundary condition it is necessary to determine the volume 
of the vortex, Qt.  This is done by finding q(r )  from (4.3) after substituting for vl and 
v2 from (4.1) and (4.5), and then integrating the profiIe to find the volume. This pro- 
cedure leads to the result that 

(4.11) 

We then use this value for A to calculate the shape and size of the vortex. We find 
that the depth of the vortex at  time t is 

(4.12) 

and that the maximum depth h(t)  occurs at  r = 0. The maximum radius of the vortex 
occurs at  the surface ( r (R)  = 0) and is related to the maximum depth by the equation 
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FIGURE 7 .  A shadowgraph showing a side view of a vortex produced by a constant flux of 
dyed fluid from a confined source. The profile given by (4.12) is superimposed. f = 2.4 s-l, 
g' = 1.0 cm r2, Q = 3.0 cms s-l, H = 40 cm, S = 0.32 and 1 = 570 s. The scale on the right- 
hand side is in cm and offset every 10 cm. 

The volume of the vortex at  time t is given by 

(4.13) 

(4.14) 

The shape of the vortex given by (4.12) is compared with a laboratory vortex on 
figure 7.  For this case the depth ratio is 6 = 0.32, the Rossby radius is h = 2.64 cm, 
and the radius R ( =  7.75 cm) is determined by substituting a known value for the 
volume Qt in (4.14). The theoretical curve gives a reasonable descriptioii of the 
observed interface shape, although the laboratory vortex has a greater radius and is 
shallower than predicted. 

It is difficult to extract the explicit behaviour of the radius R and the maximum 
depth h with time from (4.13) and (4.14). However, in the limit 6 = h / H  < 1 we can 
use series expansions of I, and Il to obtain 

(4.15) 

and (4.16) 
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FIGUFE 8. The dimensionless radius & and maximum depth h as functions of the dimensionless 
time t ,  for a number of constant flux experiments. Eight experiments are shown, with 1 < f < 5 s-l, 
0.20 < g' < 10 cm s - ~  and 0.33 < Q < 3.1 cm3 s-l. The solid lines are those given by the 
inviscid model (4.15) and (4.16). 

where the dimensionless radius and depth are given by & = f 2R/g' and = f 2h/g', 
respectively, and the dimensionless time is i = &f6t/ 'gr3.  The radius and depth of a 
number of laboratory vortices are plotted against time on figure 8. The straight lines 
are those given by (4.15) and (4.16). The radius is found to  increase approximately as 
t i ,  while the depth increases as ti. However the radius is 50-100 yo greater and the 
depth 30-70% smaller than predicted. There are a number of properties of the 
laboratory flow that have been neglected in the analysis and which contribute to this 
discrepancy. It was assumed that the source acts as a delta function at the origin 
whereas in fact it has a finite size. The fluid entering the vortex therefore has some 
cyclonic angular momentum, and its anticyclonic azimuthal velocity dus to radial 
spreading is less than that given by (4.1). I n  addition, the neglect of the centrifugal 
force in the lower layer becomes a poor approximation as the depth ratio increases. 
Both of these effects imply that the slope of the interface should be less than predicted 
by (4.12). Finally, we have assumed that the motion is inviscid. VVe shall now briefly 
consider the effects of finite fluid viscosity on the vortex. 

(ii) Injuence of friction. In  the experiments, Ekman boundary layers are produced 
on the free surface, on the rigid bottom and on the interface between the two layers. 
An Ekman number based on the maximum depth of the vortex takes values of 
O(1O-4) so that the Ekman layers are thin compared with the depth of the vortex. 
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FIGURE 9. The radial profile of azimuthal velocity u1 (1 cm to 3 cm below the surface) for an 
axisymmetric vortex at two stages during a single constant flux experiment: x , t = 430 s ;  
0 ,  t = 2990 s after the source flow began. The radius is non-dimensionalized by the viscous 
length scale R, given by (4.17). In this case R, = 3.1 cm. Arrows show the radius R of the 
vortex, the smaller value corresponding to the earlier time. The straight solid line is the velocity 
profile predicted for the upper layer by (4.1), and the two broken lines are fitted by eye to the 
data. 

However, the associated Ekman transport can significantly alter the flow velocities 
and hence the shape of the density interface. Fluid in the outward-moving Ekman 
layers acquires angular momentum. Thus, as can be seen in figure 7, the slope of the 
interface required to  balance the Coriolis force f (vl - wz) is smaller at larger radii and 
the vortex has a greater radial extent than that predicted by the inviscid analysis. 

The flow within the vortex was visualized by adding dye to  the source reservoir 
after the vortex had grown for some time. Fluid entering the vortex from the source 
first moves down along the axis of rotation in a column with a diameter roughly equal 
to  that of the source. After reaching the tip of the vortex, the fluid is transported 
towards the outer edge of the vortex in the interfacial Ekman layer. The central 
vertical column of dyed fluid slowly enlarges in diameter, indicating the presence of 
a small radial velocity throughout the vortex. I n  the lower layer, fluid is carried in 
towards the tip of the vortex in an Ekman layer immediately below the interface. 
There is a very small amount of mixing between the fluids in the Ekman layers on 
either side of the interface, and this leads to the presence of mixed fluid beneath the 
tip of the vortex shown in figure 7. 

The effect of the Ekman layers on the vortex is to spin up the fluid as it moves 
radially outward. Near the axis the fluid is not influenced by friction. This process 
can be characterized by a radial length scale R, a t  which the time scale for advection, 
R,,/uy, equals the spin-up time scale h,/(fu)g, where u, and h, are suitable velocity 
and depth scales, respectively. From conservation of volume we also know that 
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FIGURE 10. (a-f) For legend see opposite. 

Q = h, R,u,. It follows, as shown by Gill et al. (1979), that 

R, = Q J ( f v ) - k .  (4.17) 

Gill eb al. present numerical solutionsfor the flow in a densevortexwith bottom friction 
when the environment is stationary (infinitely deep). These show that the vortex has 
an essentially inviscid core of radius R, inside which the depth and velocity profiles 
are close to those predicted by the inviscid model. When R > R,, the azimuthal 
velocity has a maximurn value near r = R, and then decreases to zero a t  both r = 0 
and r = R. 

I n  our experiments the radial profile of azimuthal velocity was determined from 
streak photographs of aluminium particles. Figure 9 shows velocity profiles (obtained 
from streaks in a horizontal sheet 1 em below the free surface) for the axisymmetric 
flow at  two times during one constant flux experiment. I n  this case the viscous length 
scale is R,. = 3.1 em and the vortex radius is given by AIR, = 1-3 (crosses) and 
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FIGURE 10. A sequence of streak photographs for one constant flux experiment, in which the 
source flow was turned off at  t = 2478 s. The streaks are in a horizontal plane 1 cm to 3 cm 
below the free surface, and are 4 s  exposures of aluminium particles suspended in the flow. 
Each frame shows an area 45 x 33 cm at the free surface. The frames are shown sequentially 
andweretakenatthefollowingtimes.(a)t = 1246s; ( b ) t  = 1556s;(c)t = 16lOs;(d)t =1637s;  
(e) t = 2003s; ( f )  t = 2735s; (9)  t = 2743s; (h) t = 2770s; (i) t = 2800s; ( j )  t = 2817s. 
The experimental parameters are f = 2.2 s-1, g' = 0.2 cm s - ~ ,  Q = 1.1 cm3 s-l, H = 40 cm. 

RIR, = 2.5 (circles). The velocity is normalized by the value -&fR, and the solid 
line is the velocity profile of the upper layer given by the inviscid theory for a point 
source. As the vortex enlarges, the velocity reaches a maximum near r = R, and 
decreases toward wz (=+ 0 )  at r z R. The maximum velocity is significantly less than 
that predicted by (4.1) because of friction and the finite size of the source. At r > R 
the lower layer moves anticyclonically as predicted by (4.9) but has also lost some 
angular momentum due to  friction at the bottom of the tank. 

4.2. Non-axisynimetric $ow 
(i) Qualitative behaviour. We have described the basic axisymmetric, two-layer flow 
that is produced by a confined source of fluid. However, all of the observed vortices 
reached a stage at  which the flow became non-axisymmetric. The qualitative nature 
of the transition to non-axisymmetric flow and the subsequent motions will be des- 
cribed here by reference to the experiment shown in figure 10. This sequence of plan- 
view streak photographs shows the motion in a plane 1 to 3 cm below the free surface 
for this vortex. The source flow was begun at  time t = 0, and the subsequent times 
are given for each frame. The dark shadow to the left of the vortex is a shadow pro- 
duced by dye in the source fluid, and its size indicates the diameter of the vortex at 
the surface. 
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Initially the anticyclonic flow is circular and stable, as shown in the first frame. A 
disturbance of azimuthal wavenumber n = 2 then becomes visible (b ) .  The subsequent 
behaviour of the disturbance is very similar to the n = 2 instabilities of the constant 
volume vortices described in 3 3.2. Two ‘arms’ of source fluid grow from the outer 
extremities of the disturbance and these arms are wound into cyclonic eddies, one on 
each side of the elongated central vortex (c), During this process the whole patterndrifts 
anticyclonically (in contrast to the constant volume vortices for which the disturbance 
is stationary in the rotating frame) due to the motion in the lower layer (see (4.9)). 

After the development of the two cyclonic eddies, the evolution of the flow follows 
one of two paths. Sometimes, an instability with a smaller length scale appears in the 
flow, accompanied by the dissipation of the cyclonic eddies. This stage is seen in 
figure lO(d). Provided the source flow is maintained, a stable, circular vortex is re- 
established ( e )  and the cyclonic eddies are engulfed by the central vortex as it con- 
tinues to grow. This vortex eventually becomes unstable again (f ), with the instability 
taking the same form as the first instability. This second instability may also decay to 
produce yet another axisymmetric vortex. We have observed a sequence of as many 
as three such transitions from axisymmetric to non-axisymmetric flow in a given 
experiment. The smaller scale instability is always observed before the redevelopment 
of a stable circular vortex from a non-axisymmetric flow. The nature of the process is 
not known. It might extract energy from the velocity shear via the Kelvin-Helmholtz 
mechanism or it might extract potential energy from the density field via the super- 
critical, baroclinic, finger-like cells discussed by Pedlosky ( 1  976). 

An alternative evolution of the flow after the growth of an n = 2 disturbance and 
the formation of two cyclonic eddies is that shown in figure l O ( f )  to  (j). The central 
vortex becomes increasingly eccentric (9)  until it separates into two distinct anticyclo- 
nic eddies (h).  There are then two vortex pairs each containing one cyclonic and one 
anticyclonic eddy. This behaviour is identical with that observed in the constant 
volume experiments. The two anticyclones are again connected by a narrow, high- 
velocity stream that contains flow in opposite directions on the two sides (i and j). 
The two vortex pairs travel radially in opposite directions and the narrow jet 
eventually breaks. No input fluid is left a t  the source. 

In  the example shown in figure 10 the source was turned off before the beginning 
of the second instability. However, a similar break-up of the central vortex also 
occurs when the source flow is maintained, as in figure 1 1. The only noticeable difference 
is that when the source is left on the cyclones are less intense, and the anticyclones 
more intense. 

Observations from the side show further features of the transition from circular to 
non-axisymmetric flow. Shadowgraph side-views of the transition for one laboratory 
vortex are shown in figure 12, and the corresponding plan views (using dyed source 
fluid) are shown in figure 13. The stable, circular flow is shown in ( a )  and ( b )  of each 
figure. The early stages in the formation of the two ‘spiral arms’ are shown in (c) 
of each figure. At this stage irregularities, or kinks, have appeared on the density 
interface. The deep anticyclone is elongated by the n = 2 disturbance and (d )  and ( e )  
show the major and minor axes of the vortex, respectively. 

Although it is not readily apparent from these still photographs, we observed that, 
during the early stages of the transition, the azimuthal disturbance has a depth- 
dependent structure. It was particularly noticeable on deeper vortices, but seems to 
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FIGURE 11. A sequence of streak photographs of an experiment similar to that shown in figure 
10, except that here the source flow is maintained throughout. The frames were taken at the 
following times. (a) t = 3420 s ;  (5) t = 3480 s ;  (c) t = 3540 s ;  (d) t = 3570 s. The experimental 
parameters aref = 1.1 s-1, g’ = 0.2 cm 5-2, Q = 1.0 cm3 s-l, H = 40 em. 

be common to all the vortices. The elongated vortex is twisted around in the anti- 
cyclonic direction with increasing depth. This implies that the phase of the azimu- 
thally propagating wave increases with depth. Such a phase variation is a distinguishing 
feature of baroclinically unstable disturbances (Gill et al. 1974) and suggests that 
the kinetic energy of the disturbance is provided by the release of potential energy 
from the density field. 

Figures l Z ( f )  and 13(f )  show that the ‘spiral arms’ continue to develop and that 
they carry the less dense fluid outward into the cyclonic eddies. The central vortex is 
consequently reduced in depth, as shown by the shadowgraphs ( e )  and ( f ) .  Thus the 
instability enables the fluid in the vortex to overcome the rotational constraint. The 
fluid spreads radially and reduces the potential energy of the flow. 

We have only discussed those experiments in which the non-axisymmetric distur- 
bances had an azimuthal wavenumber n = 2. No examples were found of vortices 
which remained stable (n = 0) ,  or which became unstable at higher wavenumbers 
(n  2 3).  The only exceptions to n = 2 were a few cases where the vortex wandered 
off the source, a behaviour that may be regarded as an amplification of an n = 1 
baroclinic mode. This occurred at  high values of the rotation rate (f > 4 s-l), where 
the curvature of the free surface was pronounced and may have influenced the vortex 
motion. Some experiments were also performed with the source on a rigid horizontal 
base. Dense fluid supplied from the source then produced an inverted vortex on the 
bottom. In  this case all vortices wandered off the source. This behaviour is probably 
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FIGURE 14. The value of O * ( S * / [  1 - a*])-& measured immediately prior to the onset of instability 
for the constant flux vortices, as a function of the ratio of the viscous to advective time scales 
4 = Q2f7/g'4v. The closed symbols refer to vortices for which 6* > 0.2, and the open symbols 
to those with 6* < 0.2. Circles and triangles denote the first and subsequent instabilities of a 
vortex, respectively. Typical error bars are shown. 

due to a centrifugal instability of the horizontal density gradient, as was discussed 
in $3.2 for bottom vortices of constant volume. I n  the following discussion of the 
conditions a t  which transition t o  non-axisymmetric flow occurred, only those cases 
in which disturbances had a wavenumber n = 2 will be considered. 

(ii) Critical conditions. Measurements of the radius R* and the maximum depth h* 
of the vortex were taken a t  the onset of non-axisymmetric flow. Each of these quan- 
tities can be written as a function of the independent parameters in the dimensionless 
form 

(4.18) 

Only the kinematic viscosity v was held fixed in our experiments. 
The stability of the laboratory vortex flow with continuous volume addition can 

be understood in terms of the stability results for vortices of fixed volume and previous 
studies of baroclinic instability. The rectilinear, two-layer baroclinic instability prob- 
lem discussed in $3.2 shows that a given horizontal wavenumber is unstable when 
the parameter 6'(6/(1-6))-* is less than some critical value (see (3.1)). Here 
0 = g'h/f2R2 is again an  internal Richardson number for the vortex and 6 = h /H 
is the depth ratio. As noted in 9 3.2, a similar result was found by Hart (1972, 1980) 
for two-layer flow with circular geometry. 

The value of 6' and 6 at the time that disturbances begin to  grow will be denoted 
by 6'* and 6" respectively. I n  figure 14 the laboratory data for 6'*(6*/( 1 - 8*))-4 are 
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plotted against Q = Q2f7/gt4v, which is the ratio of the time scale (f Qlg'v) required for 
Ekman pumping to spin up the vortex and the time scale (g'3/Qf6) required for inviscid 
radial advection. As a given vortex grows, the value of 6 slowly decreases, while 
6/( 1 - 6) increases. Therefore, during the growth of a stable, circular vortex, the value 
of 0(6/( 1 - 6))-adecreases with timeuntil, a t  somevalueof 6*(S*/( 1 - a*))-* 2 the 
vortex becomes unstable to a non-axisymmetric disturbance. 

On figure 14 we have differentiated between those points for which 6* > 0-2 (filled 
symbols) and those for which 6* < 0.2 (open symbols). Both the first instability 
(circles) and any subsequent instability (triangles) are shown for each vortex. When 
6* > 0.2 we see that the vortices become unstable a t  similar values of O(S/( 1 - a))-*. 
The critical value is a weak function of Q, decreasing from 0.04 at Q M lo2 to 0.01 a t  
Q M lolo. On the other hand, those vortices with a very small depth ratio (8" c 0-2) 
can become unstable a t  much larger values of 6(S/( 1 -a))-&. This observation is con- 
sistent with the results for constant volume vortices (see figure 5), for which it was 
found that higher wavenumbers amplified a t  smaller values of 6 when S < 10-l. It 
was also concluded in that case (see 53.2) that barotropic processes dominated the 
growth of disturbances at such small depth ratios. This, indeed, is the rationale for 
differentiating between instabilities of constant flux vortices a t  small and large depth 
ratios. 

For instabilities at  large depth ratios (6" > 0.2) the results are broadly consistent 
with those predicted by Phillips' model and the analyses of Hart (1972, 1980), in 
which there is no horizontal shear. The onset of baroclinic instability is known, how- 
ever, to be dependent upon the velocity profile in the mean flow. Thevortices appear to 
be 'less stable' at  smaller values of Q and these are the conditions a t  which friction 
has had a greater influence on the motion in the vortex. A measure of the velocity 
profile at marginal stability is obtained from the radius R* at instability non-dimen- 
sionalized by the viscous length scale R,. 

The ratio R*/R, is plotted against Q on figure 15. Apart from the radius at  which 
instability was first observed (circles), the figure shows the radii a t  which the second 
(triangles) and third (squares) instabilities occurred. (A second instability is not 
shown for a number of the experiments because the source was sometimes turned off 
after a stable vortex had reformed. I n  other cases, the vortex reached the side walls 
before a second instability occurred). I n  two cases, the ratio RIR, is plotted for the 
observed axisymmetric flow (crosses) as the vortex grows. Figure 15 shows that 
R*/R, is smaller a t  larger values of Q, and these are the conditions at  which the inner 
inviscid core occupies a larger fraction of the vortex. Thus the influence of friction 
upon the velocity profile appears to destabilize the vortex. 

Another observation which demonstrates the role of frictional effects is that our 
vortices rapidly become unstable once the source flow is turned off. Friction causes 
the radius to increase and the depth to decrease. The parameter 6(6/( 1 -a))-+ there- 
fore rapidly decreases towards its critical value. 

(iii) The marginally unstable mode. The experiments with a confined source of fluid 
involve flows that pass through a sequence of quasi-steady states in which the buoy- 
ancy, Coriolis and centrifugal forces are balanced. Thus a marginally stable state is 
approached slowly as thevortex grows and @a/( 1 - S))-a decreases towards the critical 
value. As was noted in fi 3.2, the lowest wavenumber that can release energy is n = 2. 
Hence (3.1) implies that this mode is the first to become unstable. Higher 
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FIGURE 15. The critical radius of the vortex R* non-dimensionalized by the viscous length 
scale R, as a function of 0 = Q2f7/g'4v. Circles, triangles and squares denote the first, second 
and third instabilities, respectively. Two examples (marked by crosses) show the approach of 
a vortex towards its critical size. Typical error bars are shown. 

wavenumbers require even smaller values of a(&/(  1 - S))-i. A similar result was found 
by Hart (1972), except that  he found the first mode to become unstable (for inviscid 
flow) had wavenumber n = 1. However, in his case the interface does not intersect 
either horizontal boundary so that this mode leads to a decrease of the potential 
energy of the flow. 

I n  contrast to the experiments described in this section, the constant volume vor- 
tices discussed in 3 3 collapse rapidly into a state of quasi-geostrophic balance with, 
in many cases, highly supercritical values of a(&/( 1 - S))-*. Then the disturbance with 
the largest growth rate, given approximately by (3.3),  dominates the pattern and 
higher wavenumbers are observed. 

(iv) Large-amplitude behaviour. The evolution of the flow after a disturbance has 
grown to large amplitude depends on the depth ratio S". It may also depend on the 
initial velocity profile (determined by R*/R,), although probably to a lesser extent. 
As a vortex grows by the continuous addition of fluid, S increases until S(&/( 1 - &))-4 
reaches a critical value. At this point non-axisymmetric disturbances lead to a rapid 
reduction of 6. If the vortex restabilizes, the depth ratio increases again until the 
critical value of @(a,/( 1 - S))-* is reached and a second instability occurs. The radius 
of the vortex a t  the second instability is greater than at  the first (see figure 15) and 
S* is larger. Consequently, the potential and kinetic energy of the vortex are greater 
a t  each successive instability. 

For the constant volume vortices i t  was found that the strength of the cyclonic 
circulations produced by the instability increased with the depth ratio. The same is 
true of the constant flux vortices. Consequently, the strength of the cyclones increases 



Vortices in a rotating, strati$ed Jluid 31 1 

at  each subsequent instability of a given vortex. Eventually they become sufficiently 
strong to cause the central anticyclonic vortex to split apart. Thus a vortex may re- 
stabilize after the first few instabilities but break up after a subsequent one. 

The continuous inflow of source fluid supplies anticyclonic relative vorticity to the 
central vortex. Consequently, if the source is turned off, as in figure 10, then it should 
be easier for the cyclones to pull the central anticyclone apart. Indeed, we observe 
that the vortex can only re-stabilize if the source flow is maintained. 

5. Jntrusions into a density gradient 
A brief description is given here of the flow that is produced by a continuous source 

of fluid in a linear density gradient. The vortex flow has many features in common 
with that in the two-layer experiments ( 3  4). I n  particular, non-axisymmetric distur- 
bances again appear when the vortex reaches a critical size and the nature of the 
subsequent break-up of the intrusion is identical. 

These experiments were all performed in the rectangular tank described in Q 2 with 
a fluid depth of 40 cin. A constant vertical density gradient was most easily produced 
by bringing two layers of salt solution into solid-body rotation, and then stirring 
vertically with a horizontal grid (which also rotated with the container). After a 
settling period of one hour, dye streaks revealed that no motion relative to  the con- 
tainer remained. Salinity samples showed the density variation to be close to linear 
throughout a deep central portion of the fluid column. Another salt solution was then 
released a t  its own density level from the source described in 9 4. I n  the absence of 
rotation the intruding fluid spread radially in a thin layer. In  a rotating environment 
the intrusion formed an anticyclonic vortex round the source. For given fluid pro- 
perties this system has only three adjustable parameters: the Coriolis parameter f, 
the (constant) flow-rate Q and the buoyancy frequency N = ( - ( g / p )  dpldz):. 

Before discussing the onset of non-axisymmetric disturbances, we shall describe the 
basic axisymmetric flow. Figures 1 6 ( a )  and ( b )  are shadowgraph images of two of the 
vortices. These vortices are axisymmetric, the azimuthal flow within them being 
circular and anticyclonic. There is also anticyclonic motion in the environment above 
and below the vortex due to the vertical compression of fluid columns as the vortex 
grows. The aspect ratio h/R, where h is the half-depth and R is the vortex radius, of 
these two vortices are quite different (0.47 and 0.99, respectively). However, the 
values of the Prandtl ratio N h / f R  are very similar (0.28 and 0.32, respectively). Gill 
(1981) presents an exact solution for a two-dimensional, inviscid intrusion. His model 
predicts that A%/ f R is a constant of order unity. The observation that the Prandtl 
ratio for the laboratory vortices is considerably smaller than the inviscid value 
indicates that viscosity is important. As in the two-layer case friction acts over the 
lifetime of a laboratory vortex, transferring angular momentum to the intruding 
fluid and flattening the density contours. The finite size of the source also contributes 
to this effect, as discussed in 9 4. 

I n  figures 16(a )  and ( b )  a series of density steps is visible in the density gradient 
above and below the homogeneous intrusions. The number and horizontal extent of 
these structures grow with time. They are therefore more extensive, for a vortex of 
given volume, in experiments with smaller flow-rates Q (figure 16a). The layers appear 
to be identical to those that develop in a rotating salinity gradient adjacent to a more 



312 R. W .  Grifiths and P.  F .  Linden 



Vortices in a rotating, strati3ed jluid 313 

slowly rotating horizontal disk (Baker 1971, Calman 1977). In  the present case, the 
solid disk is replaced by a domed density interface. The density steps are considered 
to  be a finite-amplitude manifestation of a viscous-diffusive overturning proposed by 
McIntyre (1970) .  The presence of the layers appears to have no influence on the 
instability of the vortex, which will now be described. 

The vortices in a linear density gradient become unstable and break up in the same 
manner as those a t  the free surface of a homogeneous layer. The intrusion increases 
in volume until the available energy is sufficient to amplify non-axisymmetric distur- 
bances. As for the constant flux, two-layer vortices, the amplified mode always has 
an azimuthal wavenumber n = 2. 

Again the n = 1 baroclinic mode cannot release potential energy as it corresponds 
to the motion of the vortex along its own density level which is a geopotential 
surface. Two ‘spiral arms’ originate from the crests of the perturbation, forming a 
cyclonic ring of source fluid on each side of the elongated anticyclonic vortex. This 
stage is shown in figure l S ( c ) ,  which is a later stage of the vortex shown in 
figure 16(b )  (the flow is viewed along the major axis of the elongated central 
vortex). 

The half-depth h* and radius R* were measured immediately prior to  the onset 
of instability of the vortex in three experiments. The critical Prandtl ratio 
Nh*/fR* took the values 0.28: 0.32 and 0.15 ,  and so we conclude that Nh*/fR* 5 0.2 
implies an unstable vortex. The Aow eventually breaks up to  form two pairs of 
stable vortices, each with larger values of the Prandtl ratio. The critical internal 
Richardson number in these experiments is (A%*/f*R*)2 N 0.02 to 0.1 ,  a value that 
is comparable with 8” N 0.02 for the two-layer experiments. 

6.  Conclusions 
Some simple experiments demonstrate a number of important properties of un- 

stable disturbances in a two-layer, rotating fluid. Using either a constant volume of 
fluid or a constant flux from a small source, the experiments produce basic axisym- 
metric flows of horizontal scale R, in which the density interface intersects one hori- 
zontal boundary. The two types of flow possess different velocity and potential 
vorticity profiles, but yield very similar behaviour of amplifying wavelike distur- 
bances and subsequent non-axisymmetric motions. 

The stability of both systems can be described by the two dimensionless parameters 
8 (the square of the ratio of the Rossby radius (g’h)*/f to the length scale R) and the 
depth ratio 6 = h /H.  Vortices in the constant flux experiments pass from stable to  
marginally unstable conditions when 8(8/( 1 - a))-* N 0.02. If the density interface 
intersects the free surface, the marginally unstable mode always has an azimuthal 
wavenumber n = 2. While the disturbance is growing we observe that its phase 

~~ 

FIGURE 16. Side-view shadowgraph images of vortices produced by a constant flux of (dyed) 
fluid from a small soiirce in a constant density gradient. (a) f = 1.1  s-l, N = 0.66s-’, 
Q = 1 . 3  cm3 s-l and t = 780 s after the source was turned on; ( b )  f = 1.1 s-l, N = 0.35 s-I ,  

Q = 4.8 cm3 s-l and t = 360 s;  (c) the same vortex as in ( b )  but at  t = 480 s. The vortices in 
(a)  and ( b )  are axisymmetric about the axis of rotation but in (c) we are looking along the major 
axis of a very elongated vortex. The line snpcrimposed on the photograph in (a)  is 10 cm long. 
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increases with depth (or with decreasing radius), and such a phase variation is a 
distinguishing feature of baroclinically unstable modes. Instability leads to a decrease 
of the depth of the vortex and therefore a release of potential energy. On the other 
hand, if the interface intersects the horizontal bottom boundary, the mode with 
n = 1 can be the first to become unstable, but this is a centrifugal instability due to 
the flat bottom which crosses geopotential surfaces. Vortices can also be unstable a t  
values of 8(S/( 1 - S))-* significantly greater than 0.02 when S < 0.2, and this is thought 
to be due to the supply of kinetic energy from the lateral shear. 

The constant volume experiments, on the other hand, produce supercritical flow. 
Again, the minimum wavenumber observed for those cases in which the density front 
intersects the free surface is n = 2 .  As 8, is decreased the wavenumber increases. 
However, as 6, is decreased from unity a t  a fixed value of 8, the wavenumber passes 
through a minimum at a ratio of layer depths S N 10-l. The growth rate of distur- 
bances, though difficult to estimate with the present experimental arrangement, 
decreases with decreasing depth ratio 6. These results are consistent with those pre- 
dicted for an instability that is predominantly baroclinic when the maximum depth 
of the vortex exceeds & of the total depth of fluid, but predominantly barotropic 
when 6 z So < 10-l. 

Our results for surface vortices produced by the collapse of a cylinder of fluid differ 
from the results of similar experiments in which the density front intersects the bottom 
boundary (Saunders 1973). Stable vortices could be produced on the flat bottom but 
not at the free surface, and vortex wandering (n = 1) is observed only for bottom 
vortices. The drift velocity of the amplifying disturbances is in the direction of flow 
for bottom vortices but not measurably different from zero for surface vortices. 
Finally, transitions from one wavenumber to another (at So = 1)  for surface vortices 
occur a t  smaller values of 8,. This last effect and the existence of stable bottom 
vortices probably result from the viscous decay of the long waves by the bottom 
Ekman layer. Vortex wandering depends upon the sign of the horizontal density 
gradient and the fact that the bottom boundary is not a geopotential surface. A 
variation of the drift velocity of regular baroclinic waves has also been observed in a 
differentially heated, rotating annulus (Douglas, Hide & Mason 1972) when the sign 
of the horizontal temperature gradient is reversed, or the free surface is replaced by tt 
rigid lid. 

The presence of a density front leads to dramatic large amplitude behaviour of the 
non-axisymmetric flow. I n  both types of experiment, pairing of vortices of opposite 
sign causes some or all of the fluid in the original anticyclonic vortex to be carried 
away in the radial direction. At sufficiently large values of the depth ratio 6, the first 
stage of pairing involves a primarily baroclinic disturbance that is unstable. As its 
amplitude grows there is an accumulation of cyclonic vorticity just ahead (in the 
cyclonic direction) of each crest of the disturbance. Numerical calculations (Orlanski 
1969, Hart 1974) for a quasi-geostrophic current with horizontal shear show that 
mixed modes can be unstable when 8 N O( 1), with perturbations receiving both kinetic 
and potential energy. On the other hand, when the Rossby radius is much smaller 
than the horizontal length scale (8 < I )  a primarily baroclinic instability can transfer 
kinetic energy into the mean flow. In  our experiments there is a large cyclonic hori- 
zontal shear near the density interface, while 8 2 Thus at large depth ratios we 
are unable to say whether the kinetic energy of the intensifying cyclonic circulations 
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is drawn from the horizontal shear or from the release of potential energy by the 
baroclinic disturbance. 

Once formed, the cyclones assist the release of potential energy from the density 
field by entraining into a cyclonic ring buoyant fluid from the original vortex. They 
also influence the formation of closed anticyclonic circulation within the baroclinic 
wave, and the splitting of the central vortex. Vortex dipole structures result and these 
propagate over the free surface. 

At very small values of the depth ratio (6 < 10-I) our observations indicate that 
the initial perturbation is primarily barotropic. However, instability again leads to 
the release of potential energy stored in the originai vortex. As the disturbance grows 
to large amplitude, vortex dipoles similar to those found a t  larger S are formed, 
although they remove a smaller proportion of the fluid from the original vortex. A 
strong anticyclone remains after the vortex pairing and splitting process is complete. 

so that ageostrophic 
effects must be included in a full description of the fluid motion. Finite Rossby- 
number effects are also important near fronts in the atmosphere and ocean, where 
the depth of one layer approaches zero and the fluid vorticity can approach - f. The 
consequent stretching of fluid vortex lines has been shown (see Hoskins 1976) to pro- 
duce an asymmetry in nonlinear baroclinic disturbances : the intensification of cyclonic 
vortices and weakening of anticyclonic vortices. It seems likely that such an asym- 
metry occurs in our experiments, particularly during the phase in which cyclonic 
circulation is intensifying and streamlines within the anticyclonic lobes are closing. 

There are several ways in which this work could be extended. In  particular, a 
better description of the basic axisymmetric flows, including the influence of friction 
and depth dependence, would enable a more satisfactory stability analysis to be 
carried out. The subsequent non-axisymmetric flow in the two-layer experiments 
also has a depth dependence that we have not fully investigated. For homogeneous 
vortices within a density gradient our observations show that the flow behaviour 
has much in common with that in the two-layer system. However, our examination 
of such intrusions is incomplete and their full description requires further study. 

All of our laboratory flows have Rossby numbers 2 
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